Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Biomolecules & Therapeutics ; : 282-289, 2021.
Article in English | WPRIM | ID: wpr-889615

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARSCoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

2.
Biomolecules & Therapeutics ; : 282-289, 2021.
Article in English | WPRIM | ID: wpr-897319

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARSCoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

3.
Journal of the Japanese Association of Rural Medicine ; : 603-2019.
Article in Japanese | WPRIM | ID: wpr-738329

ABSTRACT

In this study, we implemented a health education course, comprising lectures, cooking lessons, and group discussions for household cooks, that addressed the need for continued reduction of table salt intake and evaluated the effects from participants’ narratives. After the health education course, participants reported continuing to make the following efforts: planning dishes that have a milder yet still delicious taste, evaluating the amount of salt, refraining from highly salty dishes, and continuing to reduce salt use when cooking. The reasons participants continued to reduce table salt use included wanting to live a healthy life, understanding how to reduce salt in dishes, learning to reduce salt consumption, learning to check the amount of salt in dishes, learning that low-salt cooking is easy, learning that unseasoned dishes can be delicious, and feeling the benefits of reduced salt intake. Participants learned that low-salt cooking is easy and how to determine the amount of salt from set values, which were effective for their continued reduction of salt intake. Moreover, our study shows that continuous support is important until individuals become accustomed to milder tastes.

SELECTION OF CITATIONS
SEARCH DETAIL